Você poderia me ajudar a fatorar a expressão abaixo?
$25a^4 - 100b^2$
Hessandra
============================================================================
Olá Hessandra,
Fatorar é transformar equações algébricas em produtos de duas ou mais expressões, chamadas fatores.
Analisando a expressão, podemos ver que é possível colocar o 25 em evidência. Veja:
$25a^4 - 100b^2$
$25(a^4 - 4b^2)$
Se fizermos a operação distributiva, voltaremos à expressão anterior. Portanto, não mudamos nenhum valor da equação, apenas alteramos sua forma.
Pelo método da diferença de quadrados, sabemos que:
$a^2 - b^2 = (a + b)*(a - b)$
Sendo assim, vamos alterar a forma da nossa expressão, de modo que possamos aplicar este método.
$25(a^4 - 4b^2)$
$25((a^2)^2 - (2b)^2)$
Veja que se considerarmos $(a^2)$ como “a” e $(2b)$ como “b”, podemos aplicar o método da diferença de quadrados. Portanto, nossa expressão fica:
$25((a^2)^2 - (2b)^2)$
$25((a^2 + 2b)*(a^2 - 2b))$
$25(a^2 + 2b)*(a^2 - 2b)$
Pronto! Fatoramos a expressão.
Um abraço!
============================================================================
Saiba como enviar suas dúvidas. Clique aqui!
Nenhum comentário:
Postar um comentário